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Abstract 

We present a new history matching approach designed 
for highly detailed seismic derived prior models. An 
ensemble-based optimization method is used to integrate 
production data and quantify associated uncertainties. An 
adaptive multi-scale wavelet parameterization is applied 
to stabilize the inversion and preserve the compatibility of 
history matched models with seismic data by first 
modifying a few low frequency parameters and then 
progressively allowing more important updates on a 
limited number of sensitive parameters of higher 
resolution. We show numerically that this adaptive multi-
scale method avoids unnecessary updates and reduces 
noise, which are typically observed in standard ensemble-
based methods when using a small ensemble. The new 
method is validated using a synthetic example. We 
observe that the final realizations better preserve the 
spatial distribution of the prior models, are less noisy and 
also fit the production data better than the realizations 
updated using a standard grid-block method. 

Introduction 

Simultaneous inversion of 3D seismic and production 
data is generally difficult, due to a number of factors such 
as the high dimensionality of the seismic inverse problem 
compared to the history matching problem, intrinsic 
differences about the underlying scale of observation and 
differences in ways models are parameterized. For these 
reasons, seismic and production data may be integrated 
sequentially: an initial petrophysical geo-model is built 
using seismic information, usually through pre-stack 
seismic inversion and then is perturbed to match historic 
production data. For this second step, ensemble-based 
methods of optimization (Aanonsen et al., 2009) have 
become popular thanks to their flexibility, computational 
efficiency and ability to match dynamic data using a wide 
range of parameters and quantify posterior uncertainties. 
A global gradient is statistically computed from an 
ensemble of realizations and is used to update each 
individual member. However, for high dimensional 
problems, the size of the ensemble is limited as a full fluid 
flow simulation needs to be run for each member. For this 
reason, the resulting gradient may be noisy and leads to 
spurious updates which will damage important geological 
seismic-driven features of the prior models and 

significantly reduce the variability of the ensemble. 
Localization (Chen and Oliver, 2010-b) is often used to 
limit these effects by limiting updates to predefined areas. 
However, it is not trivial to characterize these areas. 
Furthermore, parameters outside the localization do not 
benefit from the assimilation of the production data. 

Here, we propose a new adaptive multi-scale history 
matching approach which preserves the prior information 
and stabilizes the inversion process by sequentially 
selecting a limited number of parameters localized in 
sensitive areas. 

Different methods of multi-scale parameterization are 
found in the petroleum literature (Chavent and Bissel, 
1998; Lu and Horne, 2000; Grimstad et al., 2003; Ben 
Ameur et al., 2002; Mannseth, 2006; Jafarpour and 
McLaughlin, 2008; Bhark et al., 2011). Generally, the 
optimization is started using a coarse parameterization, 
which is successively refined. The major benefit of this 
approach is that the coarse version of the problem is 
better defined and generally more linear than in a fine-
scale model, which helps to avoid local minima and over-
parameterization. 

In this work, we re-parameterize the history matching 
problem using second generation wavelets (Swelden, 
1997). Wavelet functions are localized both in space and 
frequency. Thus, the problem can be adapted depending 
on the local sensitivity of the parameters: sensitive areas 
are updated mainly based on the data mismatch, whereas 
insensitive areas are more constrained by the prior 
model. However, unlike the usual localization, global 
updates are performed through the large scale 
parameters. Moreover sensitive zones are automatically 
chosen by analyzing the optimization results. A synthetic 
test case is used to demonstrate the advantages of our 
approach compared to a standard grid-block-based 
parameterization method. 

Re-parameterization using 2nd generation wavelets 

The discrete wavelet transform is a linear transformation 
which decomposes the signal into different frequencies. 
Its basis is composed of finite support functions called 
wavelets. Each wavelet is associated with a frequency 
range and a finite localization in space. This property is 
used in image compression where high frequencies are 
only included where they bring important information, for 
example to characterize a sharp color variation. Since 
images or reservoir properties are generally spatially 
correlated, only a few wavelet coefficients are needed to 
obtain a good approximation of the original signal. For this 
reason, wavelet-based re-parameterization of an ill-posed 
inverse problem is interesting as it yields a significant 
reduction in the number of inverted parameters. However, 
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 unlike image compression in which coefficients are 

selected based on their impact on the visual aspect of an 
image, our adaptive history matching method selects 
additional frequencies only where they have an important 
impact on the flow response. 

Standard first generation wavelets (Mallat, 1989) are built 
from translations and dilatations (by a factor of two) of a 
generating function called the mother wavelet. Because of 
translation-dilatation invariance, first generation wavelets 
are usually only applicable to grids of dimensions equal to 
a power of two. For this reason, we use second 
generation wavelets which can be applied to any grid and 
are flexible (Gentilhomme et al., 2012). Second 
generation wavelets lack the translation and dilatation 
invariance property. Instead, they are adapted to their 
spatial localization, but keep the same space-frequency 
localization property as traditional wavelets. In this work, 
we use a quadratic wavelet based on a polynomial 
interpolation of degree two, which can be seen as an 
improved Haar wavelet (Swelden and Schröder, 1996). 

Optimization with reduced number of parameters 

The Levenberg-Marquardt ensemble randomized 
maximum likelihood (LM-enRML) (Chen and Oliver, 2012-
a; Chen and Oliver, in review) is an iterative Levenberg-
Marquardt method which computes a global gradient 
using an ensemble of realizations. The global gradient is 
used to update simultaneously several realizations which 
are members of the ensemble (Gu and Oliver, 2007). The 
initial ensemble can be constructed using realizations 
derived from seismic stochastic inversion (Buland and 
Omre, 2003; Moyen and Doyen, 2009) and deemed to be 
representative of the seismic inversion uncertainty. Each 
ensemble member (vector of parameters, i.e. cell 
porosities, permeabilities…) 𝐦 of size n is transformed 
into wavelet coefficients. The optimization is then 
performed on a subset of selected coefficients 𝛄opt of size 
nopt ≤ n, such that: 

�
𝛄opt
𝛄opt����� = 𝐖.𝐦   (1) 

where W, m, 𝛄opt and 𝛄opt���� correspond to the (n x n)  
wavelet transform matrix, the (n x 1) initial vector of grid-
block values (i.e. porosity, permeability), the (nopt x 1) 
vector of wavelet coefficients included in the optimization 
and its ((n – nopt) x 1) complement vector respectively. 
During optimization, which is constrained by a number of 
nd data, the global gradient is obtained from the (nd x nopt) 
sensitivity matrix G which is computed from the ne 
ensemble members by solving: 

∆𝐃 = 𝐆. ∆𝚪   (2) 

Each column of the (nd x ne) ∆𝐃 matrix and the (nopt x ne)  
∆𝚪 matrix store, for each realization, the deviation of the 
predicted data and deviation of the wavelets coefficients 
from the ensemble means, respectively. Because of the 
reduction in the number of parameters (nopt ≤ n), the 
computation of G is relatively fast. Finally, the 
perturbation of the parameters can be represented as: 

δ𝛄opt =  − 1
𝜆+1(𝝆 ∘ 𝛿γ𝑝𝑟 + 𝑲.𝑮�𝝆 ∘ 𝛿𝛄𝑝𝑟�)− 𝑲. 𝛿𝒅   (3) 

 

Where 𝜆 + 1 is the Levenberg-Marquardt damping 
parameter (scalar), 𝑲 is a matrix similar to the Kalman 
gain (Chen and Oliver, in review), 𝛿𝛄𝑝𝑟 is the deviation 
from the prior (nopt x 1) vector, 𝛿𝒅 is the data mismatch (nd 
x 1) vector, 𝝆 is a (nopt x 1) vector of values in [0,𝜆 + 1] 
weighting the contribution of the prior during the 
optimization and ∘ represents the Schur product. 

Although we optimize only a subset of the coefficients, all 
coefficients are used to reconstruct the properties used by 
the flow simulator. However, it is generally useful to 
attenuate the impact of non-selected coefficients (mostly 
high frequencies) on the flow response in order to simplify 
the objective function and avoid local minima. 
Accordingly, the high frequencies are smoothed at the 
beginning of the optimization. Thanks to the compression 
property of the wavelet basis, all important features are 
still preserved, as illustrated in Figure 1. 

 
Figure 1: Original porosity realization (left) and its 
smoothed version (right) used at the beginning of the 
multi-scale approach. 

Due to the smoothing of the realizations, some high 
frequency prior information is lost. During the optimization 
process, this information is reintroduced at the update 
stage (equation 3) thanks to the adaptive prior 
constraint 𝝆 ∘ 𝛿𝛄𝑝𝑟. Since the wavelet coefficients are 
localized in space, the prior constraint can be adapted 
depending on the localization. 

Adaptive multi-scale approach 

Adaptive multi-scale methods are commonly used in 
history matching (Chavent and Bissel, 1998; Grimstad et 
al., 2003; Lu and Horne, 2000; Bhark et al., 2011) in order 
to adapt the parameterization to the data, stabilize the 
inversion and avoid over-parameterization. Although not 
formally proven, multi-scale optimization is considered to 
help avoid local minima (Liu, 1993; Mannseth, 2006; 
Chavent, 2009). Generally, these methods start by 
optimizing a limited number of large scale coefficients. 
The parameterization resolution is then increased by 
analyzing the results of the optimization step. In this work, 
we propose an adaptive approach based on LM-enRML 
optimization using wavelet parameterization. An overview 
of this method is given in Figure 2. The main central loop 
corresponds to iterations through the different resolutions. 
Before entering the loop (step 0), some low resolution 
wavelet coefficients are selected depending on the 
confidence we have in the prior model. In the first step 
(step 1), these parameters are optimized using the LM-
enRML algorithm. Then (step 2), the algorithm checks 
whether iterations should continue. If so, at the next step 
(step 3), new parameters corresponding to the next finer 
resolution are added. By analyzing the last sensitivity Prior term Mismatch term 
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matrix (equation 2), it is possible to identify sensitive 
parameters at the current resolution. For these sensitive 
parameters, the prior constraint is kept low (by setting the 
corresponding values in 𝜌 close to 0) and the data 
mismatch term will mainly condition their update (equation 
3). For the insensitive parameters, more weight is put on 
the prior constraint such that it controls the parameters 
update. In this manner, the prior knowledge, which was 
removed through realizations smoothing, is reintroduced 
without significantly affecting the objective function. 
Finally, a new optimization is run with the new 
parameterization and constraint. This process is repeated 
until the finest resolution is reached or the mismatch falls 
within production data uncertainty. 

 
Figure 2: Overview of the adaptive multi-scale approach. 
(0) Initialize the parameterization. (1) Optimize with the 
current parameterization. (2) Check stopping criteria. (3) 
Find sensitive areas and adapt the prior constraint 
weights 𝝆. 

Adaptive refinement 

Several techniques of adaptive refinement have been 
proposed in the context of history matching in order to 
select the most relevant parameters for lowering the 
objective function based on its local approximation or 
gradient analysis (Chavent and Bissel, 1998; Lu and 
Horne, 2000; Ben Ameur et al., 2002; Grimstad et al., 
2003). In this work, we use a sensitivity matrix computed 
from the last flow simulations using equation 2. However, 
instead of computing the sensitivity corresponding to the 
wavelet coefficients, we compute the sensitivity of the 
scaling coefficients, which correspond to the local 
averages of the properties (Sweldens and Schröder, 
1996). Because the sensitivity matrix computed from an 
ensemble can be very noisy, a distance-based averaging 
filter is applied to each row of the sensitivity matrix which 
can be seen as a (3D) sensitivity map for one data point 
(Figure 3, left). Then, using all the rows, it is possible to 
compute a (3D) map of the most sensitive parameters 
(Figure 3, right) by taking into account all the data. Finally, 
the corresponding sensitive wavelet coefficients can be 
identified. This approach is similar to the enKF 
localization as described in Chen and Oliver (2010-b), 
where the analysis of the cross-correlation between data 
and parameters is used to define a prior localization of the 
Kalman gain (localization for each data point). However, 
our adaptive multi-scale method has several advantages 
compared to prior grid block manual localization. (1) The 
multi-scale approach optimizes a few coarse scale 
parameters first while preserving all others frequencies. 
Although it is generally not possible to match the data 

only using these parameters, the data mismatch can be 
significantly reduced, thereby limiting the perturbation of 
the finer frequencies. (2) The multi-scale parameterization 
allows global updating of the realizations and not only 
inside predefined areas. Moreover, as the localization is 
handled by the prior weights 𝝆, updates can still be made 
if the flow response is found to be very sensitive to 
parameters localized outside an incorrect localization. (3) 
Unlike prior localization, our approach provides an 
adaptive localization, i.e., sensitive area may evolve 
during the optimization process. (4) Finally, no a priori 
maps need to be created, which can be a difficult task. 
However, because of the limited size of the ensemble and 
despite the smoothing of the realizations, the quality of 
the sensitivity matrix might not be sufficient. In this case, it 
might be useful to use prior localization maps along with 
the adaptive refinement. 

 
Figure 3: Sensitivity analysis and sensitive areas 
indicator. Left: Well P2 water cut (at time t) sensitivity map 
at a coarse resolution. Right: Sensitivity map including all 
the sensitivity analyses. 

Example 

History matching using second generation wavelets 
parameterization and adaptive multi-scale refinement is 
tested on a two dimensional synthetic case composed of 
3355 active cells which are populated by porosity and 
permeability fields generated from object-based 
simulation and Sequential Gaussian Simulation. A total of 
nine producers and four injectors, arranged in a five-spot 
pattern, are used to generate data representing seven 
years of production with the porosity and permeability 
fields displayed in the Figure 4. Water saturations, 
pressure and gas-oil ratio are used to constrain the 
inversion of the permeability and porosity fields. 
Ensemble optimization with the standard full grid-block 
parameterization and our adaptive multi-scale approach 
are compared. Quadratic wavelets are used as basis 
functions in the second case. In both cases, a total 
number of 15 iterations are performed using an ensemble 
of 60 realizations generated from object-based simulation. 
Results 

Figure 5 shows the evolution of the objective function for 
both cases. With the full grid-block parameterization, the 
objective function converges faster, but reaches a final 
mismatch 2.5 times larger than with the wavelet 
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 parameterization, suggesting that the latter is less 

sensitive to local minima. 

 
Figure 4: Porosity (left) and log-permeability (right) fields 
used to generate the synthetic data. 
With the adaptive multi-scale approach, a sensitivity 
analysis (Figure 5, vertical lines) is performed before each 
introduction of finer resolution coefficients and after the 
finest resolution is reached. In the latter case, no 
additional resolutions are added but the sensitive area is 
extended such that the prior constraint is relaxed. After 
eight iterations, the two methods have a similar mismatch 
even if the multi-scale method does not include all the 
resolutions. After the 9th iteration of the new method, the 
objective function increases slightly: some high 
frequencies, removed during the smoothing of the 
realizations, are reintroduced and a small increase of the 
mismatch is permitted by the algorithm. This way, the 
prior information is better preserved and the variability at 
this resolution increases, which is beneficial for the 
ensemble as it avoids its collapse. 

Figure 5: Evolution of the objective functions with the grid-
block (blue) and adaptive multi-scale (green) 
parameterization. The Ri correspond to newly added 
wavelet coefficient resolutions. Vertical lines indicate 
sensitivity analysis steps and modification of the prior 
constraint. 

Matches of pressure and water cut for wells P1, P6 and 
P8 are displayed in Figures 6 to 8. Generally, the 
pressure match is better using our method while the 
match of the water cut is not significantly improved 
compared to the grid-block approach, which might result 
from the better characterization of the large scale with our 
method. In order to compare the two methods, the same 
data set is used to constrain the inversion of each 
realization. This does not correspond to the original 
enRML formulation where conditioning data for each 
realization are sampled from the data distribution (see Gu 

and Oliver, 2007). This explains why the resulting data 
spread is quite low. 

Figures 9 and 11 show the resulting porosity and 
permeability fields after assimilation of production data 
using the two methods. Comparison of the true model 
(Figure 4) and the final realizations shows that, in both 
cases, the integration of production data enables the 
characterization of important flow structures, especially 
close to the wells. However, away from the wells, the 
multi-scale approach avoids the introduction of spurious 
structures that are not present in the true model. 
Moreover, the final realizations generated using the multi-
scale approach better preserve the spatial structure of the 
prior models, are less noisy and also fit the production 
data better than the realizations constructed using the 
standard grid-block approach. Average cell-by-cell 
perturbations from prior maps, computed from the entire 
ensemble, are shown in Figures 10 and 12. The multi-
scale approach yields a better match while minimizing 
both the amplitude and spatial frequency of the 
perturbations. Moreover, important modifications are 
mainly localized in areas around the wells whereas they 
are spread over the entire model in the grid-block 
approach. 

Conclusions 

The adaptive multi-scale method based on second 
generation wavelets parameterization appears to be 
useful for stabilizing the inversion and avoiding spurious 
effects in ensemble-based optimization methods. In the 
synthetic example presented here, a better match and 
preservation of the prior are obtained with our approach 
compared to a standard enRML method. The multi-scale 
approach and the smoothing of the realizations tend to 
make the problem more linear, which helps avoid local 
minima. At the same time, the adaptive prior constraint 
manages to efficiently incorporate prior knowledge 
(seismic-derived information) without damaging the 
advantages of the multi-scale approach, which helps 
maintain a sufficient variability in the ensemble. 
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Figure 6: Bottom-hole pressure match at well P1. 

Figure 7: Bottom-hole pressure at well P6 

 
Figure 8: Water cut at well P6. 
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Figure 9: Porosity realizations before and after 
optimization. Top row: initial realizations and their 
mismatches. Middle row: updated realizations using the 
multi-scale method and their mismatches. Bottom row: 
updated realizations using standard grid-block 
parameterization and their mismatches. 

 

 
Figure 10: Average porosity deviation (cell by cell the 
difference between porosity in the initial and final model) 
from the prior computed from all the realizations. Left: 
grid-block approach. Right: multi-scale approach. 

 
Figure 11: Permeability realizations before and after 
optimization. Top row: initial realizations and their 
mismatches. Middle row: updated realizations using the 
multi-scale method and their mismatches. Bottom row: 
updated realizations using standard grid-block 
parameterization and their mismatches. 

 

 
Figure 12: Average log-permeability deviation from the 
prior computed from all the realizations. Left: grid-block 
approach. Right: multi-scale approach. 
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